3D printed fluidics with embedded analytic functionality for automated reaction optimisation

نویسندگان

  • Andrew J Capel
  • Andrew Wright
  • Matthew J Harding
  • George W Weaver
  • Yuqi Li
  • Russell A Harris
  • Steve Edmondson
  • Ruth D Goodridge
  • Steven D R Christie
چکیده

Additive manufacturing or '3D printing' is being developed as a novel manufacturing process for the production of bespoke micro- and milliscale fluidic devices. When coupled with online monitoring and optimisation software, this offers an advanced, customised method for performing automated chemical synthesis. This paper reports the use of two additive manufacturing processes, stereolithography and selective laser melting, to create multifunctional fluidic devices with embedded reaction monitoring capability. The selectively laser melted parts are the first published examples of multifunctional 3D printed metal fluidic devices. These devices allow high temperature and pressure chemistry to be performed in solvent systems destructive to the majority of devices manufactured via stereolithography, polymer jetting and fused deposition modelling processes previously utilised for this application. These devices were integrated with commercially available flow chemistry, chromatographic and spectroscopic analysis equipment, allowing automated online and inline optimisation of the reaction medium. This set-up allowed the optimisation of two reactions, a ketone functional group interconversion and a fused polycyclic heterocycle formation, via spectroscopic and chromatographic analysis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

DNA Assembly in 3D Printed Fluidics

The process of connecting genetic parts-DNA assembly-is a foundational technology for synthetic biology. Microfluidics present an attractive solution for minimizing use of costly reagents, enabling multiplexed reactions, and automating protocols by integrating multiple protocol steps. However, microfluidics fabrication and operation can be expensive and requires expertise, limiting access to th...

متن کامل

Customisable 3D printed microfluidics for integrated analysis and optimisation.

The formation of smart Lab-on-a-Chip (LOC) devices featuring integrated sensing optics is currently hindered by convoluted and expensive manufacturing procedures. In this work, a series of 3D-printed LOC devices were designed and manufactured via stereolithography (SL) in a matter of hours. The spectroscopic performance of a variety of optical fibre combinations were tested, and the optimum pat...

متن کامل

Ankle-Foot Orthosis Made by 3D Printing Technique and Automated Design Software

We described 3D printing technique and automated design software and clinical results after the application of this AFO to a patient with a foot drop. After acquiring a 3D modelling file of a patient's lower leg with peroneal neuropathy by a 3D scanner, we loaded this file on the automated orthosis software and created the "STL" file. The designed AFO was printed using a fused filament fabricat...

متن کامل

Customizable 3D Printed ‘Plug and Play’ Millifluidic Devices for Programmable Fluidics

Three dimensional (3D) printing is actively sought after in recent years as a promising novel technology to construct complex objects, which scope spans from nano- to over millimeter scale. Previously we utilized Fused deposition modeling (FDM)-based 3D printer to construct complex 3D chemical fluidic systems, and here we demonstrate the construction of 3D milli-fluidic structures for programma...

متن کامل

A technique to design complex 3D lab on chip involving multilayered fluidics, embedded thick electrodes, and hard packaging - Application to dielectrophoresis and electroporation of cells

multilayered fluidics, embedded thick electrodes, and hard packaging Application to dielectrophoresis and electroporation of cells G Mottet, J Villemejane, L M Mir and B Le Pioufle 1 SATIE, ENS Cachan, 61av Président Wilson, 94235 Cachan cedex France 2 CNRS, UMR 8121, Institute Gustave-Roussy, 39 rue Camille Desmoulins, 94805 Villejuif cedex France 3 Université Paris Sud, UMR 8121 guillaume.mot...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 13  شماره 

صفحات  -

تاریخ انتشار 2017